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A numerical method has been developed that is capable of describing turbulent, 
compressible, subsonic separated jet flow fields. The method uses a modification of the 
Brailovskaya two-step implicit artificial viscosity algorithm which includes an explicit 
artificial mass dissipation added to the continuity equation. Solutions are obtained 
by applying the numerical scheme to the four governing equations which describe the 
time-dependent, two-dimensional, turbulent, compressible flow of an ideal gas. Tur- 
bulent Reynolds stresses were described by means of the Prandtl-GBrtler approximation. 
Starting with arbitrary initial conditions, a solution is marched forward in time until 
a condition satisfactorily close to steady state is achieved. Computations were performed 
for confined jet air flows at a March number of 0.45, wall offsets of two and four nozzle 
widths, and zero wall angle. The calculations were compared with experimental data and 
acceptable agreement was found. 

Since the development of the so-called fluid amplifier in 1960, there has been 
considerable effort directed toward analyzing confined jet flow fields. The operation 
of the bistable or wall-attachment fluidic device depends upon the Coanda effect, 
named for the Rumanian engineer who publicized it in 1940. This phenomenon 
amounts to a submerged jet of fluid being continuously deflected toward a nearby 
wall until reattachment occurs. A standing vortex or recirculation bubble is 
trapped between the jet on one side and the wall on the other side as illustrated 
in Fig. 1. This figure shows a wall on both sides of the jet. If the distance 
from the edge of the jet to each of the sidewalls (the offset) is the same, the jet can 
attach to either wall and is thus referred to as a bistable device. Once reattachment 
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has occurred, the low pressure in the vortex region creates a pressure gradient 
across the main part of the jet that keeps the jet deflected toward the reattachment 
wall. 
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X 

Y 

FIG. 1. Bistable fluidic device. 

Most of the analytical and numerical work devoted to studying the device 
shown in Fig. 1 has been performed by using greatly simplified physical models. 
These give some of the features of the flow, usually the reattachment length and 
sometimes an estimate of an average recirculation bubble pressure. However, to 
date no numerical or analytical studies have been published which attempt to 
describe the complete velocity and pressure fields in a subsonic turbulent separated 
jet. Therefore, the primary objective of this investigation [I] was to develop a 
method capable of predicting the complete velocity and pressure fields in a sub- 
sonic, turbulent separated jet flow. 

The first analysis of confined jet flows was performed by Bourque and Newman 
[2]. This has since been updated by Bourque [3] and slight variations of the basic 
model have been used by several other investigators [4, 51. 

Each of these investigators assumed that the pressure inside the recirculation 
bubble was constant or else used a control volume at the reattachment point which 
allowed the details of the pressure variations in the flow field to be ignored. Thus, 
they were unable to derive any details of the pressure field. They all assumed 
approximate velocity profiles in the main part of the jet which resemble those 
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which have been experimentally measured. They did not try to derive any detailed 
picture of the velocity profiles. The models were aimed principally at calculating 
the reattachment length, and were only able to obtain agreement which is at best 
approximate. 

Zumwalt and Walker [6] suggested the method used in the present study. They 
recommended solving the time dependent equations of motion using an arbitrary 
set of initial conditions and carrying the calculations forward in time until the 
results converged to a steady state. The idea was apparently originated by Crocco 
[7]. The work which most closely parallels the present study is that of Walker et al. 
[8] who developed a numerical solution for a supersonic, turbulent free jet. 
However, because of the fundamental mathematical differences between subsonic 
and supersonic flows, the method of solution used in this study is significantly 
different from that reported in [8]. Roache [9], Goodrich [lo], and Brailovskaya 
[ll] all solved backstep problems which are related to the confined jet problem. 
All three authors studied laminar phenomena and all used the method of calculating 
a steady state from the time dependent equations. Roache used an explicit, one-sided 
“weather differencing” type of finite differencing whose details were presented by 
Kurzrock [12]. The origin of “weather” or “upwind” or “donor cell” differencing 
is attributed by Richtmeyer and Morton [13] to Lelevier. Walker and Goodrich 
both used the Rusanov [14] explicit artificial viscosity method and Brailovskaya 
used a two-step explicit (forward difference in time) method. 

As noted above, the present research effort was concentrated on development 
of a numerical computation scheme which describes the pressure and velocity 
fields for the two-dimensional, subsonic, turbulent reattached jet. The method 
finally adopted was a modification of the two-step implicit artificial dissipation 
algorithm demonstrated by Brailovskaya. Calculation involves starting from a 
somewhat arbitrary initial condition and solving the time dependent form of the 
equations of motion. The time dependent solution is carried forward in time until 
it reaches steady state asymptotically. This steady flow is then declared the desired 
solution, a solution which gives the two components of velocity, as well as the 
pressure, as desired answers. Two cases were run to completion. The results are 
compared with both published experimental data taken from similar geometries 
and with experimental data taken at Rice University for which one of the above 
cases provided numerical simulation. 

For this study, the working fluid was assumed to be an ideal gas with constant 
specific heats and with y = 1.4. It was further assumed that the Reynolds number 
was sufficiently high so that the only viscous effects of importance were those due 
to turbulent momentum exchange, the turbulent Reynolds stresses. The Mach 
number in the numerical calculations was set at 0.45, a value for which some 
experimental data exists and for which additional usable data could be obtained 
with equipment available to the authors. 
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GOVERNING EQUATIONS 

As mentioned above, for the physical problems of interest in this investigation, 
molecular transport effects may be neglected in comparison with turbulent transport 
phenomenon. Therefore, in order to determine a mathematical description of the 
two-dimensional, turbulent mixing process, it is necessary to alter the inviscid 
hydrodynamic equations so as to include turbulence effects. The inviscid equations, 
which represent the conservation of mass, momentum, and energy, can be written 
in general conservation form, as [8] 

afiat + aqax + aGjay = 0, 

where f, F, and G are four-component, column matrix vectors given by 

(1) 

f= 

where 

1 p (u” + 0”) e -  P 
Y-1 2 * 

The top row in (2) corresponds to the continuity equation; the second and 
third rows to the x and y-momentum equations, respectively; and the bottom row 
to the energy equation. 

For a turbulence analysis, the dependent variables are assumed to represent 
instantaneous values at a point. Each instantaneous value is defined, in the usual 
manner, as the sum of a temporal mean and a fluctuating component. 

u = u + u’; v= V$v’; p =j-kp’; 
p = p + p’; PU = CPU> + CPU)‘; P” = (P4 + W’; (3) 
e =2-i-e’. 

The bar denotes the time average and the prime denotes the fluctuating component. 
The representation of (pu) and (pv) as fluid properties in (3) was suggested by Van 
Driest [15]. The fluid energy e has also been represented in this manner. 

The equations which describe the general, two-dimensional, turbulent mixing 
process are obtained by applying the usual methods of turbulence analysis. The 
resulting expressions in terms of time-average quantities are: 

Continuity: 

g+i!g+2gLo. 
(4) 
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x-Momentum: 

- 
a -_ - y + g [p + puu + (pu)‘u’] + Y& [pu v + (pu)‘v’] = 0. 

y-Momentum: 

- 
a -- - 

q+z [p v u + (pv) ‘u’] + 2 [p + G 0 + (pv) ‘v’] = 0. 

Energy: 
- - 

g + & {(E + p&i + * [qpu) ‘u’ + i&x4> ‘v’l> 

+ -${(i + p)o + Q [ii + Al) = 0, 

Where 

&A-+ pi27 + (pu)‘u’ + (pG& + (PU)‘U’ 
Y-1 2 
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(5) 

(6) 

(7) 

(8) 

Equation (7) was obtained under the assumptions that third-order fluctuating 
terms are small, and that inequalities (9) and (10) are valid. 

-- 
7 > u”, u v > u’v’, v2 > vi, (9) 

p ii > p’u’, p 6 > p’v’. (10) 

With regard to inequality (lo), Park [16] concluded that for flows free of shock 
discontinuities, perturbations in pressure may be neglected for Mach numbers 
less than five. Since only subsonic jet flows were considered in this investigation, 
the assumption of negligible pressure fluctuations was adopted. 

The products of the momentum and velocity flucutuating terms appearing in 
(5)-(7) may be interpreted as representing the rate of transfer of momentum across 
a surface due to turbulent fluctuations. For the turbulent stresses obtained in these 
equations, the matrix which defines the turbulent stress tensor (Reynolds stress 
tensor) is 

(::; ;;;) = -p$ g. (11) 

To date, there is no known universal theoretical model for the turbulent Reynolds 
stresses. These are usually handled by semi-empirical theories which are justified 
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to some extent by physical reasoning and by the fact that they sometimes produce 
results consistent with experiment. The particular model used depends on the 
problem to be solved, although occasionally more than one model may be used 
with varying success. 

For turbulent jet mixing situations similar to those of interest here, the form 
of the Reynolds stress used is analogous to that of the ordinary Newton’s law of 
viscosity used in laminar, viscous flows. This, following a suggestion of Boussinesq 
[17], involves using an expression of the form 

5-g = /x(aii~/aXj), (12) 

where E is the turbulent eddy viscosity. The required expression for E was developed 
for a free jet, i.e., one which is not curved, encounters no significant pressure 
gradient in the streamwise or transverse directions, and is removed from any wall 
that will inhibit turbulent mixing. From the Prandtl-Gortler theory [8], the resulting 
expression for E is 

E = u,x/2az, (13) 

where u, is the maximum value of the x-component of velocity at the plane in 
question, x is the distance from the plane to the point at which mixing began, 
and (T is the jet spread parameter that arises from an error function velocity 
profile. 

In order to adapt Eq. (13), and thereby the Reynolds stresses, to the case of a 
reattaching jet, values of a were varied in different regions of the flow. According 
to the conclusions of Mueller and Olson [18], the spread parameter should be 
different in each of the following three regions: (i) upsream from reattachment 
between the jet centerline (in this study assumed to be the line of maximum values 
of u) and the wall to which flow is not attached, (ii) upstream from reattachment 
between the jet centerline and the wall to which flow is attached, and (iii) down- 
stream from reattachment. The appropriate values for u for a Mach number of 
approximately 0.5 according to Mueller and Olson are 8.0, 10.0, and 22.0, res- 
pectively. 

Upon substituting Eqs. (12) and (13) into (1 I), the relationship for the Reynolds 
stress tensor becomes 

(14) 

where 
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The expressions for f, F, and G, including the relationships for the turbulent 
stresses, are therefore 

f= 

r 

G= 

F= 

- aii 
F+pull-(x 

(e+p)&I fiE+$?c 
( 2 ax ay 1, 

(15) 

Equations (1) and (15) describe the two dimensional time dependent turbulent 
mixing process of interest. As stated earlier, the governing equations are written 
for the case of an ideal gas with constant specific heats. Each of the time average 
quantities appearing in Eq. (15) has certain dimensions associated with it. The 
governing equations may be rendered nondimensional rather easily with respect 
to conditions in the upstream jet. Letting subscript “J” denote conditions in the 
reference plane, and the absence of an overbar denote dimensionless time average 
quantities, the dimensionless dependent and independent variables are seen to be 

e = ?/pJ, t,,,o = - - ,  XND = 2 
t PJ [ 1 w PJ W’ YND=$ 

Using these equations, one may show that this nondimensionalizing procedure was 
adopted in order to allow the governing equations to take the same form in both 
the dimensional and nondimensional cases. 
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BOUNDARY AND INITIAL CONDITIONS 

At the solid walls, three boundary conditions suffice. The first two conditions 
are that the velocity components normal and tangential to the wall should be zero. 
The third condition arises from reduction of the equation of momentum normal 
to a wall using the first two conditions. The normal momentum equation is 

where subscript ‘7” represents components tangential to the wall and subscript “n” 
represents components normal to the wall. Applying the first two boundary 
conditions, the normal momentum equation reduces to the third boundary 
condition 

ap a -=- 
ax, ax, ( 1 g. 12 

As noted earlier, laminar viscous stresses have been neglected. This obviously is 
in error in the immediate neighborhood of a wall. However, boundary layer 
theory indicates that the boundary layer thickness will be small compared with the 
cavity width [5]. Thus the influence of the viscous behavior of the flow near a wall 
should be negligible on the cavity flowfield. Of far more significance with respect 
to the flow-field is the boundary condition that u, = 0 at the wall. 

At the boundary represented by the last plane of points as the flow exits from 
the computational mesh, the boundary condition used was (af/ax) = 0, for f as 
given by (15). This condition may seem unnecessarily stringent for a boundary 
which is not “at infinity”. As a check, the conditions (azfiax2) = 0 and (a3flax3) = 0 
were also investigated and it was found that neither convergence nor stability 
considerations were significantly improved. 

The technique of calculating a steady state from the time dependent equations 
allows one to choose initial conditions which are quite arbitrary. A popular 
concept for initial conditions in separated flow problems is the slip line, a condition 
in which a line is imagined on one side of which the flow is uniform with some 
arbitrary velocity. On the other side of the line, the flow is uniform with a different 
velocity, often zero. In the present study, the initial conditions used assumed a 
jet which bent toward one of the walls and intercepted it at the plane of the 
downstream continuation. An exponential velocity profile was assumed initially. 

In experiments, Levin and Manion [4] found that if the sidewall was at least 
twice as long as the reattachment distance, then the reattachment distance would 
be unaffected by the presence of any additional length of wall. This idea was 
adopted in the present investigation, and therefore, the calculation mesh was 
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extended so that it was at least twice as long in the x-direction as the reattachment 
length given by the data of Levin and Manion. 

Having the initial jet strike the wall at the exit rather than at the presumed 
reattachment point was a check on the ability of the numerical method to predict 
correct reattachment distances. 

NUMERICAL METHOD 

The method of Brailovskaya [ll] was used for the calculation of the two 
momentum equations and the energy equation. Unfortunately, adequate stability 
could not be obtained with the continuity equation using only Brailovskay’s 
original algorithm. An additional explicit artificial mass diffusion adapted from 
Rusanov’s method [14] was therefore added. For a system of equations of the 
form given by (l), Brailovskaya’s method proceeds as follows. First, for time step 
n (t = 1: At), all the quantities necessary to determine the terms F and G are 
calculated. This includes p, u, v, E, and d t. Values of p, pu, pv, and e are already 
available either from previous calculations or as initial conditions. Next, a provi- 
sional time step is calculated from the equation 

Values of the variables represented by f should be calculated for all points in the 
finite difference mesh at this provisional time. However, the values of flow variables 
on the boundaries should not be calculated using the boundary conditions, but 
rather they should be the same values as those already found for time step n. This 
is necessary because the two step nature of the Brailovskaya method tends to 
propagate oscillating pressure waves from the boundaries. 

Values of the density at the provisional time step are calculated by a modified 
method which will be explained below. Next, a new provisional set of the variables 
necessary to determine F and G are calculated. In the present study, the eddy 
viscosity and the time step were not recalculated. However, pressure and velocity 
components everywhere except at the boundaries were recalculated. Next, one 
calculates time plane IZ + 1 via the equation 

(17) 

For the continuity equation, an explicit artificial mass diffusion from a modifica- 
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tion of the method of Rusanov [ 141 has been added. The equations for calculating 
p are 

(18) 

where 

The term o is a variable damping parameter. In a normal Rusanov algorithm 
calculation the value of w  must be chosen such that the inequality 

(1% 

is satisfied [8]. Using the Rusanov term as an additional source of stability for 
the continuity equation obviated the need for rigorons adherence to this criterion. 
The average value of w  used in this study was approximately 0.20. This value was 
chosen by experimenting numerically to determine the minimum value which 
would control density oscillations. It is interesting to note that Brailovskaya 
[19] solved a problem in laminar, supersonic, recirculating wake flow and also 
found it necessary to add a term to the continuity equation. The added term, 
corresponding to A in [l] and the present study, was of the form constant h2w, 
where w  is the modulus of the velocity vector. 

Space derivatives were approximated in the usual manner. For two general 
dependent variables q and r, the following finite difference relations were employed: 

a4 1 
& - TAX - (qj+l,k - qj--l,k)? 

m  j$$’ [(qj+l.k + qj.k)(rj+l,k - r9.k) - (qj.k f qi-l.k)(ri.k - rj-I.k)19 

w &$jj [qj+l,k (rj+l,k+l - ri+l,k--l) - q3-1.k (rj-l.k+l - I;.-l,k-I)]> 

a“q 
- w @$ (qi+l.k - &j,k + q3--1.k)* a.3 

Other difference approximations required may be inferred from the preceding 
relationships. 
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For the governing system of equations and the difference algorithm suggested by 
Brailovskaya, the stability criterion yields 

where h is a geometric parameter that is functionally related to the mesh spacings. 
In practice, the first term was always dominant. As noted earlier, the Brailovskaya 
technique did not provide completely stable computations for the problems of 
interest here, i.e., a subsonic turbulent separated jet flow. Therefore, a Rusanov type 
artificial dissipation was added to the continuity equation. As one would suspect, 
the computational stability requirements were thereby altered. Numerical experi- 
mentation revealed that the first term of (20) could still be used for the combined 
difference approximations of Brailovskaya and Rusanov if h was expressed as 

h = 0.7KW + @.JJ)~I”~MV + 
[ 
,x~~~~Ay~2 

1 
l,2 , 

(21) 
(Ax)‘@Y)’ 

where 

g,(N) = WOO, g2(N) = 1 - N/1000; N<lOOO, 

g,(N) = 1.0, g,(N) = 0, N>lOOO, 

and N is the number of time steps which have been calculated. In the laminar 
supersonic wake problem solved by Brailovskaya [19], h was expressed as h = 
min (Ax, Ay). 

The form of h given in (21) is a strictly empirical linear combination of two 
different reference distances. The first term contains a straightforward Pythagorean 
addition of the two sides of a mesh square. The second contains a distance which 
appeared in Rusanov’s [14] stability criterion and also in the criterion for the 
Lax-Wendroff method [I 31. 

RESULTS 

Two cases were calculated in sufficient detail to illustrate the validity of the 
numerical scheme. Both cases were for a symmetrical confined jet device similar 
to that depicted in Fig. 1. A turbulent air jet with a constant jet exit Mach number 
of 0.45 was assumed to separate at the jet exit (x = 0) and flow into a cavity 
whose walls were parallel to the x axis (zero wall angle). The first case considered 
an offset of two nozzle widths (2 W) and the second an offset of four nozzle widths 
(4 IV). Because of the two dimensional nature of the governing equations, both 
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cases were for an infinite aspect ratio. The 2 W offset problem had a field 13 W 
long with a difference mesh spacing of fly/Ax = l/2. The 4 W offset case, on the 
other hand, had a field 20 W long with Ay/Ax = l/2. 

The primary purpose of the 6 = 2 W problem was to establish the convergence 
and stability of the computational scheme. Computations were halted after 1850 
time steps, at which time the changes in pressure were less than 0.3 % in 250 time 
steps. This case, therefore, demonstrated that stable computations were possible 
and that convergence could be achieved to as close a degree as desired. For this 
reason, computations for the 6 = 4 W case were halted after 1375 time steps, at 
which time transverse pressure fluctuations were no longer detectable and pressure 
changes were less than 1% in 175 time steps. 

0 4.5 9.5 14.5 19.5 

x/w 
FIG. 2. Development of horizontal velocity component with time for 6 = 4W. 

Since the results for the two cases are qualitatively similar, only the results for 
the 4 W case will be presented here. Figure 2 shows the development of the 
horizontal velocity component U, with time at selected distances along the duct. 
The initial velocity profile may be seen, as well as the profiles at 700 and 1375 time 
steps. The velocity, as well as all other properties, was held constant in the exit 
plane of the supply jet (X = 0). Although the initial conditions prescribed in the 
flowfield have little effect on the ultimate steady state solution, some reduction in 
computer time can be realized by choosing initial conditions that are near the 
final steady state values. For this reason, the velocity profiles shown in Fig. 2 
were selected. Any other set of initial profiles would have given the same results, 
but the computer time required would be different. 

Figure 3 shows the velocity vector diagram and Fig. 4 the isobars at time step 
1375. As may be seen from the vector diagram, a recirculation region has formed in 
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the separation bubble, thus providing qualitative agreement with what is known to 
occur physically. In the upper portion of the field, mass is inducted from the exit 
plane of the cavity and caused to flow upstream replenishing the gas that has been 
entrained toward the reattachment wall by the high velocity stream. This reversed 
flow along the upper wall is known to occur physically [20] so long as the offset is 

the separation bubble, thus providing qualitative agreement with what is known to 
occur physically. In the upper portion of the field, mass is inducted from the exit 
plane of the cavity and caused to flow upstream replenishing the gas that has been 
entrained toward the reattachment wall by the high velocity stream. This reversed 
flow along the upper wall is known to occur physically [20] so long as the offset is 
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FIG. 3. Velocity vector diagram at time step 1375; 6 = 4W. 
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FIG. 4. Isobars at time step 1375; 6 = 4W. 
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greater than about 3 W. For offsets less than this value, a secondary attachment 
point with an associated recirculation bubble occurs along the upper wall, thus 
suppressing the induction of mass from the exit plane. It is interesting to note that 
for the 2 Woffset case that was considered, the secondary attachement point and 
the associated suppression of flow along the upper wall was predicted. 

The computed attachment point for the 4 W case is shown in both Figs. 3 and 4. 
As indicated, the flow attached to the lower wall approximately I1 W downstream 
from the jet exit. This compared with an attachment distance of approximately 
10 W reported by Levin and Manion [4] for the case of 4 W offset and zero wall 
angle. However, the data of Ref. [4] were taken with only one sidewall present. 
Therefore, the flow was not precisely that of a confined jet since atmospheric 
pressure existed along the entire length of the upper boundary of the cavity. That 
the absence of an upper wall could in fact cause the discrepancy between the 
calculated reattachment length and that reported in Ref. [4] was verified by a 
simple modification to the 2 W offset case. For this case, the calculated reattach- 
ment distance was 9 W, whereas the distance reported in Ref. [4] was 6 W. The 
upper wall was removed in the computations with the result that the calculated 
reattachment length came into agreement with that reported in the literature. 

Experimental data has been taken [21] giving pressure contours for the reattach- 
ment region in a confined jet device operating with air supplied at a Mach number 
of 0.45. This data was taken at offsets of 2, 4, and 6 Wand wall angles of 10, 20, 
and 30”. Although none of these geometrical configurations is exactly the same as 
the ones studied in the present investigation, some comparisons can be made. For 
example, the approximate shape and location of the low pressure region of the 
calculated recirculation bubble compare favorably with the experimental data. 
Further, the data show that lowest pressures of about 2.5-3.5 % below ambient 
can be expected. Considering the pressure in the outlet plane as ambient, the 
minimum calculated pressures are about 3 % below this value. 

In an effort to obtain additional experimental substantiation of the numerical 
method, the apparatus described in Ref. [21] was modified to yield wall pressure 
distributions. For an offset of 4 W, zero wall angle, and a jet exit Mach number 
of 0.45, the numerically produced and actual wall pressure distributions are shown 
in Fig. 5. As may be seen from the figure, relatively good agreement between 
numerical results and experiment has been obtained. 

Figure 6 shows a comparison of the velocity profile at x/w = 5.87 with an 
experimental profile reported by Sawyer [22] at the same downstream location. 
The experimental data presented in Fig. 6 is for an offset of 4.62 W and only one 
sidewall. Thus, as in the case of the Levin and Manion results, the data of reference 
[22] are not entirely applicable to a confined jet flow. However, the relative 
comparison between the two profiles of Fig. 6 further substantiates the validity of 
the present method. 
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FIG. 5. Numerical and experimental wall pressure distributions; M = 0.45, 6 = 4W, OL = 0. 
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FIG. 6. Velocity profile at x/w = 5.87 and comparison with [22]. 

CONCLUSIONS 

A two-step time dependent numerical method has been developed that is 
capable of describing steady turbulent, subsonic, separated jet flow fields. Results 
from the method have been compared with experimental data and favorable 
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agreement has been found. The comparison with experiment demonstrates that 
even though crude, the model for the turbulent Reynolds stresses is adequate for 
describing the flow. 

The method has not been applied to time dependent phenomena such as the 
switching of flow from one wall to the other. The reason for this is that the artificial 
dissipation inherent in the two-step time derivative is a function of the amount of 
of change taking place in the field. This feature would tend to distort the time 
dependent behavior of the flow. 
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